A CONVENIENT ONE-POT PROCEDURE FOR SYNTHESIS OF THIOL ESTERS USING MAGNESIUM ION AS A CATALYST

Shunsaku OHTA* and Masao Okamoto Kyoto College of Pharmacy, Misasagi, Yamashina-ku, Kyoto 607, JAPAN

Summary: Various thiol esters $(R^1 \text{COSR}^2)$ were prepared in high yields by treatment of 1-acylimidazole with thiols in the presence of a catalytic amount of Mg(OEt)_2 . Malonic half-thiol esters $[R^1 \text{OCOCH}(R^3) \text{COSR}^2]$ were also prepared in good yields by treating magnesium monoalkyl malonate $[R^1 \text{OCOCH}(R^3) \text{COOMg}_{1/2}]$ with carbonyl-1,1'-diimidazole followed by addition of thiols.

Thio-esterification of carboxylic acid by the known methods 1) has been associated generally with some disadvantages such as use of toxic materials and heavy metals, less applicability to hindered alkanethiols and tedious procedure. Although Masamune reported that 1-acylimidazole ($\underline{2}$, Im : 1-imidazolyl group) reacted with benzenethiol to give the corresponding thiol ester $\underline{4}$ but not with alkane thiols 1b , the authors have found that the reaction of $\underline{2}$ with thiols including alkane thiols was accelerated in the presence of a catalytic amount of Mg(0Et)₂ to give the thiol esters ($\underline{4}$) in excellent yields (eq. 1 and Table 1).

$$R^{1}COOH \xrightarrow{Im_{2}CO} [R^{1}COIm] \xrightarrow{\tilde{R}^{2}SH (\underline{3}) / r.t.} R^{1}COSR^{2}$$

$$\underline{1} \xrightarrow{In DMF / r.t. (\underline{2}, in situ)} \frac{\tilde{R}^{2}SH (\underline{3}) / r.t.}{cat. amt. of Mg(OEt)_{\underline{2}}} R^{1}COSR^{2} \qquad (eq. 1)$$

For example, in the absence of ${\rm Mg(OEt)}_2$, a reaction of $\frac{1}{2}$ (${\rm R}^1$ = o-chlorophenyl, 3 mmole) with t-BuSH (3 mmole) in DMF (3 ml) at r.t. (20°) did not proceed satisfactorily even after being stirred for 24 hr (6.2 % formation of the corresponding thiol ester $\frac{4}{2}$ was observed on HPLC analysis), but in the presence of 0.03 molar equivalent of ${\rm Mg(OEt)}_2$ (11.5 mg), the reaction proceeded smoothly and almost completed after being stirred overnight at r.t. to give $\frac{4}{2}$ as oil (o-Cl-C₆H₄-COS-t-Bu) in quantitative yield after usual work-up.

Monomethyl malonate (MeOCOCH₂COOH) was readily converted to dimethyl β -ketoglutarate in quantitative yield when treated with ${\rm Im}_2{\rm CO}$, on the other hand, magnesium monomethyl malonate (5, R¹ = H, R² = Me) reacted with ${\rm Im}_2{\rm CO}$ accompanied by evolution of ${\rm CO}_2$ gas, and subsequent addition of thiols to the mixture gave the malonic half-thiol esters (9)²) in good yields (eq. 2 and Table 1). The manipulation is similar as that for o-Cl-C₆H₄-COS-t-Bu. The product of entry 10 could be easily converted to the corresponding half malonic ester (10, R¹ = H, R³ = C₆H₅, viscous material) by treating with trifluoroacetic acid (eq. 2).

Table 1 Thiol Ester obtained by the New Method³⁾

entry	thiol ester (bp ^{*1})	yıeld ^{*2}	entry	thiol ester (bp ^{*1} or mp)	yıeld ^{*2}
1	C ₆ H ₅ COS-t-Bu (bp _{1.0} 125 - 127°)	87.1	7	c-C ₆ H ₁₁ COS-2-pyridyl (mp 88 - 90°) ^{*3}	83.0
2	o-OH-C ₆ H ₄ -COS-Et (bp _{1.0} 118 - 120°)	87.0	8	Bz1-OCONHCH ₂ CH(OH)CH ₂ COSEt (viscous material)	85.4
3	o-Cl-C ₆ H ₄ -COS-t-Bu (bp _{1.0} 145 - 148°)	quant.	9	Me0C0CH ₂ COS-C ₆ H ₅ (bp _{1.0} 160 - 163°)	quant.
4	3-pyridyl-COS-t-Bu (bp _{1.0} 137 - 140°)	quant.	10	t-Bu-0C0CH ₂ COS-C ₆ H ₅ (bp _{1.0} 169 — 173°)	85.5
5	t-Bu-COS-t-Bu (bp ₂₁ 101 - 103°)	87.2	1 1	Et0C0CH(Bzl)COS-t-Bu (bp _{1.0} 175 — 178°)	quant.
6	c-C ₆ H ₁₁ -COS-t-Bu (bp _{2.0} 90 - 92°)	90.0	12	EtOCOCH(CH ₂ CH=CH ₂)COSEt (bp _{2.0} 134 - 135°)	76.2

References and Footnotes

- 1) a) H.-U.Reigig and B.Scherer, Tetrahedron Lett., 21, 4259 (1980); literatures therein.
 - b) G.S.Bates, J.Diakur, and S.Masamune, 1bid., 17, 4423 (1976); literatures therein.
 - c) H-J.Liu, S.P.Lee, and W.H.Chan, Synth. Commun., 9, 91 (1979); literatures therein.
 - d) H-J.Liu, S.K.Attah-Poku, and H.K.Lai, ibid., 9, 883 (1979); literatures therein.
- 2) Malonic half-thiol esters are of interest because of close relations to malonyl S-CoA and have been noticed recently as useful materials for organic synthesis. [D.W.Brooks, L-D.Lu, and S.Masamune, Angew. Chem. Int. Ed. Engl., 18, 72 (1979)]
- Spectral and analytical data of all compounds shown in Table 1 were consistent with their structures.

(Received in Japan 1 May 1981)